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SUMMARY 
We describe how spectral imaging, linear un-mixing and cluster computing have been combined to aid biomedical 
researchers and allow the spatial segmentation and quantitative analysis of immunohistochemically stained tissue 
section images. A novel cost-effective spectral imager, with a bandwidth of 15 nm between 400 and 700 nm, allows us 
to record both spatial and spectral data from absorptive and fluorescent chemical probes. The linear un-mixing of this 
data separates the stain distributions revealing areas of co-localisation and extracts quantitative values of optical density. 
This has been achieved at the single-pixel level of an image by non-negative least squares fitting. This process can be 
computationally expensive but great processing speed increases have been achieved through the use of cluster 
computing. We describe how several personal computers, running Microsoft WindowsXP, can be used in parallel, 
linked by the MPI (Message Passing Interface) standard. We describe how the free MPICH libraries have been 
incorporated into our spectral imaging application under the C language and how this has been extended to support 
features of MPI2 via the commercial WMPI II libraries. A cluster of 8 processors, in 4 dual-Athlon-2600+ computers, 
offered a speed up of a factor of 5 compared to a singleton. This includes the time required to transfer the data 
throughout the cluster and reflects a processing efficiency of 0.62 (a Cluster Efficacy of 3.0). The cluster was based on a 
1000Base-T Ethernet network and appears to be scalable efficiently beyond 8 processors. 
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1. INTRODUCTION 
Spectral imaging generates a three-dimensional data set that represents the sample both spatially and spectrally. 
Traditional microscopy offers high spatial resolution by coupling a high-resolution imager, typically with a minimum of 
500 x 500 pixels, to the output port of the microscope. The use of a colour imager provides some spectral information in 
the form of three broad, and partially overlapping, spectral bands covering the red, green and blue (RGB) regions. In 
contrast, spectral imaging can provide narrow bandwidth information at a high number of wavelengths spanning the 
visible spectrum. In the field of microscopy, the additional information available though this technique is not only a 
valuable tool for visualising previously invisible structures but is also of great advantage when the goals are automation 
and quantitative measurement.  
Spectral Imaging can aid the histo-pathologist by segmenting the differently coloured dyes that stain thin (< 30 µm) 
sections of biological tissue. These histo-chemical markers can reveal specific cellular and tissue characteristics and are 
commonly used as a critical form of patient diagnosis. A spectral imaging microscope is capable of resolving spectral 
changes in optical density and can therefore be useful in segmenting these dyes, especially when their apparent colours 
are similar. Most dyes used in histology have very broad absorption spectra and it is this feature that limits the 
applicability of conventional RGB camera. In general these dyes have absorption spectra that vary slowly across the 
visible with structures at the scale of 20 nm or more. However, the shapes of the spectra are often specific to the dyes 
and spectral imaging exploits this characteristic1,2. This technique is also equally applicable to fluorescent stains where 
emission spectra overlap and so are not readily separated by traditional microscope filters and “fluorescence cubes”. 
Multiple band-pass filters placed immediately in front of the camera may be used to create a spectrally resolved imager. 
Although such a system may be simple to use and cost effective for screening a specific set of dyes it is inflexible when 
compared to a tunable device that allows multiple screening procedures, inexpensively, with a single unit. 
Few practical methods for achieving tunable spectral imaging microscopy have been developed in recent years. The 
most promising of these involve the use of either a liquid crystal or acousto-optic spectral filter, or the use of a Sagnac 
interferometer. In summary, the use of an acousto-optic filter has advantages of speed  (wavelength selection times of 
the order of microseconds), variable resolution (down to 1 nm) and a wide wavelength range (500 – 1000 nm). 
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However, this is often a specialised and expensive solution. A liquid crystal filter is more cost-effective but this 
technique suffers from low transmission (<30 %), limiting its application in fluorescence microscopy where signal 
intensities are low. A different approach, based on a Sagnac interferometer3,4 is similarly specialised and expensive, 
offering a <10 nm resolution and <50 % transmission. It has the additional disadvantage that a full spectral scan must 
always be captured precluding the possibility of faster partial scans or different dwell times at specific regions of the 
spectrum. This is particularly problematic when the signal is photon-limited, where the signal-to-noise ratio can be 
improved by optimising the collection time. For a fuller review of techniques see the relevant book chapter by D.L. 
Farkas5. For this study, a system based around a Linearly Variable Filter (LVF) was used incorporating novel hardware 
and software to produce a cost-effective solution of reasonable performance compared to other techniques.  
The spectra indicative of different markers that have been used to stain a sample can be separated out from the measured 
spectrum using a linear least squares algorithm. This technique is valid if the individual reference spectra add linearly to 
form the spectrum observed. This is obviously so for fluorescence signals, we must just take care to work within the 
dynamic range of the camera and that the response of the camera is linear. For trans-illumination experiments, where the 
spectra measured are of the samples absorption, not of the light transmitted, the linear relationship also hold true. Given 
this assumption, the separation, or “un-mixing”, of biological markers from a spectral image is a relatively simple task 
of linear least-squares fitting. The proportions of the individual reference spectra are the fitted parameters given the 
reference and measured spectra. Since the problem is generally over-determined, i.e. the numbers of points that 
constitute the spectra are generally much greater than the number of fit parameters, the results are generally robust. 
We have previously shown that this technique can be used to detect minor differences in spectra, by testing the system 
performance with combinations of coloured filters, and that this is a valid technique for use in determining clinical 
outcome6,7,8. 
The increased use of the linear least-squares un-mixing technique has led to concerns over the processing speed. The 
large amount of data to process has resulted in processing times of several minutes on desktop computers. A typical 
spectral image for this study consisted of 768 by 576 pixels each containing a 50-point spectrum. For our test samples 
there were 3 reference spectra leading to 442,000 spectral fits involving 200 points, all leading to the determination of 
1.3 million free parameters. Thankfully, each pixel is independent and the calculation can be readily made parallel by 
splitting up the image. These facts lead us to pursue cluster computing as a cost effective solution to speed up to 
processing by utilising additional computing power. A computer cluster may consist of several ordinary desktop 
computers linked by a standard Ethernet network. With appropriate software the computers of the cluster can work in 
parallel to perform tasks in a fraction of the time required by a single desktop. This arrangement highly cost effective 
when compared to a multiple processor supercomputer. 
There has recently been great interest in harnessing the power of a computing cluster and much work has been done by 
the “open source” software development community in developing “Beowulf” clusters9 based on the Linux operating 
system. They have remained, in some ways, more of a developer’s curiosity than usable tool, but not without exception; 
See the work of Dagget and Greenshields10 for example. Further software development has lead to a greater degree of 
usability and the Condor Project11 provides a usable “high-throughput” computing system. It is important to note that for 
our type of application we are more interested in “high-power” computing (where a single result is returned quickly) 
than “high-throughput” (where a high number of processes are left created and left for several hours to return many 
results) and, in addition to this, we are aiming for a highly usable system that requires minimal intervention from 
computer specialists for day-to-day running. For ease of development and use, we have traditionally used exclusively 
the Windows operating system and for this reason a cluster based on Windows was required. The time to reach the same 
level of instrumentation development under Linux would be excessive. Our aim was for the user, who has no cluster 
computing training, to start the usual software that drives the Spectral Imager and transparently experience much greater 
processing power provided by a cluster. 
This paper describes our spectral imaging system and computing cluster and demonstrates the processing speed up 
achieved. 
 

2. METHODOLOGY 

2.1. Image capture 
The spectral imaging device used for this study was developed and constructed in our Institute6. It uses a standard 
monochrome CCD camera (type 4912, Cohu Inc., USA) though other types of imagers, with increased sensitivity or 
resolution may be used. The spectrally selective element is placed between the camera and the microscope output port 
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using standard C-mount couplers and is based on a linearly variable dielectric band-pass filter together with novel drive 
hardware and acquisition software. The element has a resolution of 15 nm and covers the 400 nm to 700 nm band with a 
transmission of > 40 %. The system provides wavelength agility and allows for user-set dwell times. For this study, the 
spectrally resolved device was used with an upright microscope (Optiphot, Nikon, UK) equipped with a achromatic 
objective lens was used: 10x (0.25 NA).  
Images were captured into a personal computer (PC) using a 1 GHz processor (Dell, UK, Precision 220, 256 Mbytes 
RAM) via a frame grabber (type PCI-1409, National Instruments Ltd., UK) and all software was written in the ‘C’ 
programming language under the LabWindows/CVITM development environment (National Instruments Ltd., UK) and 
WindowsXP operating system (Microsoft Corp., USA). 
The system is capable of capturing the spectral image of an emissive sample in ~10 s, spanning 400 to 700 nm in 6 nm 
steps (50 images). Optical density (OD) spectra were obtained by first capturing the spectral profile of the illumination 
through a blank part of the sample but of equivalent optical thickness and a ‘black’ image with no illumination. These 
images were used to correct the spectral image taken through the sample and to calculate the wavelength-dependant 
optical density (OD(λ)) according to the equation:  
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where λ represents wavelength and I the intensity at a single image pixel. 
Linear un-mixing of the observed spectra was achieved by least squares fitting, as previously described12. In this study 
we chose to use a non-negative least squares algorithm13 since this approach cannot give rise to negative contributions 
that clearly have no physical meaning. Distribution maps for each constituent can thus be obtained from this un-mixing 
process where the results represent proportions of the reference spectra, having units of OD normalised to the 
references. This normalised optical density is mapped to pixel intensity such that areas of heavy staining appear bright 
in the resulting image. 

2.2. Computing cluster 
The cluster consisted of 4 desktop computers connected by an Ethernet switch. It was usual to initiate processing from a 
fifth “master” computer, also connected to the switch. All computers run Microsft® Windows XPTM Professional 
operating system (Microsoft, CA, USA) and were built, in-house, using off the shelf components. They contained dual-
processors based on the AthlonTM range of chips, manufactured by AMD (Sunnyvale, CA, USA); these were selected 
for their enhanced floating point performance. Figure 1 shows schematic diagrams of the cluster as a whole and the 
relevant parts of a slave computer. 
The four “slave” computers were based on AthlonTM MP 2600+ processors with a 2.1 GHz clock speed and the master 
was based on AthlonTM MP 2200+ processors with a 1.8 GHz clock speed. The role of the master of the cluster was 
usually to distribute data to the slave machines and to collects the results after processing; these tasks were much less 
processor demanding. All cluster computers contained the Gigabyte 7DPXDW+ motherboard (Giga-Byte Technology 
Co., Ltd., Taiwan, R.O.C.) with built in 10/100 Ethernet adapter (IEEE 802.3 100Base-T) and based on the AMD 
760MPX chipset (AMD, Sunnyvale, CA, USA). This chipset supplies fast 64-bit, 66 MHz, PCI slots that are directly 
connected to the AMD 762 “Northbridge”14. Gigabit Ethernet (IEEE 802.3 1000Base-T) 64-bit PCI V2.2 adapters were 
added via this connection. These were unbranded of type NE-320G-TX. Each slave computer had 1 Gb of random 
access memory (RAM) of type: 2 x 512 Mb ECC Registered DDR PC2100 (Corsair Memory, Fremont, CA, USA). 
The Ethernet network connecting all computers was constructed using one of two Ethernet switches which supported 
either 100 Mbit/s (100Base-T) or 1 Gbit/s (1000Base-T) raw data transfer speeds. One was a 100Base-T 8-port 10/100 + 
2-port gigabit switch (unbranded type: eTen EW5082V) and the second was a 1000Base-T 8-port gigabit switch 
(unbranded type: eTen GSW308T). These were connected to the computers using Ethernet cable of type Cat-515. 
The computer program to drive the spectral imager and to perform all processing, including that done via the cluster was 
written in the C programming language under Labwindows/CVI development environment (National Instruments Ltd, 
UK.). Communications between the master and slave computers was driven using the so-called “Message Passing 
Interface” (MPI)16 protocol. Two software libraries where used: initial development was done using the freely available 
implementation of the MPI version 1 standard, MPICH17, further development was performed using the commercial 
WMPI II (Critical Software SA, Portugal) which is an implementation of the MPI version 2 standard. 
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MPI is an extremely flexible standard and a layer of code was written to abstract the salient parts of MPI and simplify 
them for the master/slave type of cluster and to provide and easier interface for programming.  
The code structure was designed for ease of maintenance by compiling just one executable file which contains 
instructions for both the master and slaves. The code identifies itself as master or slave according to the “rank” of the 
process provided by MPI. Rank 0 being the master; any other being a slave. The cluster as a whole contains a number of 
processors, 8 in this case, and a decision must be made about how many software processes to start that will run 
concurrently on the available processors. With MPI version 1 this decision must be made by the user and initial tests 
showed that the optimum number of processes to start is equal to the number of processors. This provides the maximum 
speedup with least overhead. We can easily see that if we create too many then some processors may have more work 
than others (more than one process) and time may be wasted waiting for the processes to finish before the final result 
can be presented. With MPI version 2 the master process has the ability to create other processes; this enables the 
optimum number of processes to be created automatically. 
The code execution proceeded as follows: slave processes would start and initialise and then wait for data from the 
master. The master process would also start and initialise and also proceed with normal events, such as acquire or load 
and display data. At the time that cluster processing is required the master would send sections of data to the slaves, the 
sections are equal in size, and then wait for the results to be returned. When a slave process had finished processing it 
returned a result to the master. The master collected all the results from the slaves and presented the combined result to 
the user. In the case of linear un-mixing with spectral image data the same processing was performed on each pixel 
independently and so the data could by simply portioned up into equal slices and sent to the slaves. This is a “single 
instruction - multiple data” arrangement. 
Testing of the cluster was done by timing the linear un-mixing process five times, noting not only the total processing 
time but also the data transfer time. The spectral image used for testing was 41 Mbytes in size and this was split up and 
distributed, together with the reference spectra, to each of the slave processes. Each slave process then returned a result 
as sections of three floating point images representing the un-mixed stains. 
Common cluster computing analysis metrics were used to determine the cluster performance. These were speedup (S), 
efficiency (ε) and efficacy (η). The speedup is defined as the ratio of the processing speed of the cluster with a number 
of processes (n) compared to a single process. Efficiency is defined below and values above 0.5 are usually considered 
good18. 
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Figure 1, The network topology diagram (a) shows how the master 
and dual-processor slave computers are connected via a Ethernet 
switch and how slave processes are distributed amongst the 
processors. Each slave computer is based on the AMD 760 MPX 
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Northbridge. 
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In order to optimise the number of cluster processors, and give an indication of scalability, some kind of cost-benefit 
analysis is required as maximising ε would usually corresponds to n = 1. Maximising S would encourage the use of too 
many processors. If we define S as our benefit, at a cost of 1/ε we can define efficacy as19: 
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2.3. Histology test samples 
Human tumour biopsies were used to provide multiply stained histology sections. Formalin fixed and paraffin 
embedded tumours were used to provide 4-µm-thick tissue sections, stained for carbonic anhydrase IX (CA9), 
pimonidazole (PIMO), and with a haematoxylin (Hx) counter-stain. This was performed using a previously described 
protocol6. 

 
3. RESULTS 

Most clinical tumours contain a significant sub-population of hypoxic tumour cells20,21 which can be visualised immuno-
histochemically through the intrinsic marker glucose carbonic anhydrase IX (CA9)22 and extrinsic hypoxic markers such 
as pimonidazole (PIMO)23. An example of separating dyes from a multiply stained histological section is shown in 
figure 2. A section from a biopsy of bladder carcinoma was stained with PIMO (resulting in a brown colouration), CA9 
(red colouration) and Hx (blue colouration). PIMO and CA-9 are known markers of hypoxia and are expected to show 
considerable overlap in their localisation in tumour tissue. Figure 2 (b, c and d) show the results of digitally extracting 
these dye distributions from the image taken with the spectral imager and the 10x objective. In this case the reference 
spectra were taken from separate singly stained sections of the same biopsy (figure 2 (e)). 
The time taken to perform the linear un-mixing operation on the test image was measured in various cluster 
configurations. The average of 5 timings was taken and the results are presented in Table 1 and graphically in figure 3. 
In most cases the master computer was used to drive a number of cluster processes on the cluster computers. In the case 
of “zero” cluster processors, one of the slave machines was used as its own master and all operations were performed by 
a single process. 

 
 Number of Cluster Processors 
100Base-T 0 1 2 3 4 5 6 7 8 
Total Time (s) 16.6 ± 0.03 21.2 ± 0.05 13.6 ± 0.03 11.3 ± 0.05 10.4 ± 0.08 9.54 ± 0.05 9.12 ± 0.06 8.76 ± 0.02 8.39 ± 0.06
Transfer (s) - 4.01 ± 0.03 4.77 ± 0.02 5.16 ± 0.01 5.48 ± 0.06 5.48 ± 0.05 5.60 ± 0.04 5.59 ± 0.03 5.55 ± 0.04

1000Base-T 0 1 2 3 4 5 6 7 8 
Total Time (s) 16.6 ± 0.03 17.6 ± 0.03 9.47 ± 0.03 6.88 ± 0.02 5.61 ± 0.03 4.78 ± 0.02 4.27 ± 0.01 3.89 ± 0.02 3.57 ± 0.02 
Transfer (s) - 0.85 ± 0.02 1.00 ± 0.03 1.11 ± 0.01 1.22 ± 0.01 1.22 ± 0.02 1.26 ± 0.03 1.21 ± 0.02 1.19 ± 0.02 

 
From these data the speed-up achieved can be calculated and using equations 2 and 3 the efficiency and efficacy were 
also calculated and are presented in figure 4. In all cases the number of slave processes equalled the number of slave 
processors. It is worth noting here the poor performance of the 100Base-T cluster where the efficacy peaks at two 
processors and correspondingly the efficiency soon drops below 0.5 as you add more processors. This indicates that a 
cluster built on the 100Base-T network is not efficiently scalable beyond two processors. In contrast the 1000Base-T 
network provides a much better basis on which to base a cluster. The peak efficacy was not reached with the 8 
processors that were available to us indicating that it would still be greatly beneficial to add processors. The speedup 
achieved with 8 processors was almost a factor of 5 (see figure 4b). 
 

Table 1, Time spent by clusters of increasing size in linear unmixing the test spectral image using the 100Base-T and 
1000Base-T Ethernet networks. The average and standard deviation of 5 measurements are shown. 
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In figures 3 and 4 the points indicating the performance of a cluster with zero processors (n=0) are also shown. These 
points indicate an initial drop in performance when clusters of numbers of processors are formed. The addition of 
network transfer time adds a time overhead that is not present when n=0 and is the source of this drop in performance. 
The number of processors had to be increased for the increase in processing speed to outweigh the network transfer time 
and provide an overall benefit. 
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Figure 2, The tissue section (a) was stained 
using carbonic anhydrase IX (CA9), 
pimonidazole (PIMO), and haematoxylin (Hx). 
These components have been spectrally 
unmixed and digitally into images b, c, and d 
respectively using the reference spectra in e. The 
spectral image consisted of 576 by 768 pixels 
each containing a 50 point spectrum between 
400 and 700 nm. 
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To explore the network transfer performance, data transfer rates were measured directly using just two slave computers 
and a 41.3 Mbyte dataset. Transfers were performed between the RAM of the two computers and so were not dependant 
on the computers hard disk drive read/write and transfer performance. Example transfer rates through 100Base-T, 
1000Base-T, and a IEEE 1394 network configurations are shown in table 2. The IEEE 1394 network was formed using 

Figure 3, Testing the computing cluster with an increasing number of cluster processors. 
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Figure 4, The speedup, efficiency and efficacy of different sized clusters. Using the 1000Base-T network the efficacy is still 
increasing at 8 processors, with the efficiency still above 0.5 (b). 
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the standard “Internet Protocol (IP) over IEEE 1394” provided by the WindowsXP operating system. The theoretical 
maximum data rates for the different networks is also shown. The IEEE 1394 network was tested as a possible, cost-
effective, alternative to 1000Base-T, requiring only an OHCI IEEE 1394 interface which is standard with most new 
PC’s. In this case it was desirable that the dataset is too large to be stored in any cache of the AMD chipset which may 
give false results. 

 
 100Base-T Network 1000Base-T Network IEEE 1394 Network 
Transfer Time 3.88 ± 0.03 s 0.69 ± 0.03 s 1.88 ± 0.03 s 
Data Rate 85.2 ± 0.7 Mbit/s 481 ± 21 Mbit/s 176 ± 3 Mbit/s 
Theoretical Maximum 100 Mbit/s 1000 Mbit/s 400 Mbit/s 

 
4. CONCLUSIONS 

A cost effective spectral imager, as previously described6, can be used to un-mix multiple stains or markers from tissue 
sections or cell samples. This linear un-mixing of multiple stains has application for aiding quantitative analysis of 
fluorescent and absorptive samples whilst retaining feature context through both imaging and by allowing the use of 
counter-stains that provide visibility of the rest of the sample. We have previously shown how the un-mixing of distinct 
colours can be achieved using the tri-band (red-green-blue) colour information of an ordinary colour camera, but the use 
of a spectral imager offering a 15-nm optical wavelength resolution can un-mix stains that spectrally overlap to a great 
extent. 
Quantitative biological assays usually involve many samples to achieve an acceptable statistical accuracy and so the 
stain un-mixing process has to be performed many times. Indeed, a system that offers almost ‘real-time’ un-mixing of 
the sample stains would be highly desirable. Unfortunately, the linear un-mixing process on a desktop computer can be 
time consuming when performed on spectral images with many megabytes of data. This problem has been the subject of 
this coding project to employ cluster computing, in a transparent and easy to use manner, in order to reduce the 
processing time. To that end a computing cluster based on the WindowsXP operating system and code written in C has 
been developed and tested. The Message Passing Interface (MPI) versions 1 and 2 have been used to implement the 
transfer of data and results between master and slave computers. Two Ethernet networks were evaluated as part of the 
cluster hardware. An Ethernet 100Base-T network was form using the motherboard-integrated network adapters of the 
computers and the performance was compared to that achieved when adding 1000Base-T network adapters to the 
computers 64-bit PCI bus. The performance of the 100Base-T network was poor in this application where large datasets 
have to be transferred. The 1000Base-T network proved very scalable up to our maximum number of processors (eight) 
with a speedup of 5 times and a cluster efficacy of 3.0 with al eight processors running. The main aim of this work was 
high-power computing to return a single result to the user quickly such that real-time un-mixing may be built upon it. 
Code optimisations have reduced the processing time to 17 seconds from previously reported times (over 130 seconds 
on a 1 GHz PC6) on a single desktop computer. Introducing cluster computing has reduced processing times again to 
around 3.5 seconds. This is now of the order of the image acquisition time and “real-time” un-mixing could be achieved 
by processing one image as the next is acquired. 
An IP over IEEE 1394 network was also tested but despite a theoretical maximum data rate of 400 Mbit/s, only 176 
Mbit/s was achieved compared to the 481 Mbit/s of the 1000Base-T network. At the time of writing, 1000Base-T 
networking is now becoming common in new pc’s and the component prices are likely to fall and so seems to be the 
network of choice for cost effective cluster solutions. 
We have shown that using standard, low-cost, computer components an effective computing cluster can be built for 
“high power” applications. Code has been written for a standard and widely used operating system and will be portable 
to newer and faster computers and network protocols as they are developed. 
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Table 2, Comparison network transfer times for memory to memory transfer of a single 41.3 Mbyte dataset. The 
average and standard deviation of 5 measurements are shown. 
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